Construction of a topological charge on fuzzy S 2 × S 2 via Ginsparg - Wilson relation

نویسندگان

  • Hajime Aoki
  • Yoshiko Hirayama
  • Satoshi Iso
چکیده

We construct a topological charge of gauge field configurations on a fuzzy S2×S2 by using a Dirac operator satisfying the Ginsparg-Wilson relation. The topological charge defined on the fuzzy S2×S2 can be interpreted as a noncommutative (or matrix) generalization of the 2nd Chern character on S2 × S2. We further calculate the number of chiral zero modes of the Dirac operator in topologically nontrivial gauge configurations. Generalizations of our formulation to fuzzy (S2)k are also discussed. e-mail address: [email protected] e-mail address: [email protected] e-mail address: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ginsparg-Wilson Relation, Topological Invariants and Finite Noncommutative Geometry

We show that the Ginsparg-Wilson (GW) relation can play an important role to define chiral structures in finite noncommutative geometries. Employing GW relation, we can prove the index theorem and construct topological invariants even if the system has only finite degrees of freedom. As an example, we consider a gauge theory on a fuzzy two-sphere and give an explicit construction of a noncommut...

متن کامل

Ginsparg-Wilson Relation and ’t Hooft-Polyakov Monopole on Fuzzy 2-Sphere

We investigate several properties of Ginsparg-Wilson fermion on fuzzy 2-sphere. We first examine chiral anomaly up to the second order of the gauge field and show that it is indeed reduced to the correct form of the Chern character in the commutative limit. Next we study topologically non-trivial gauge configurations and their topological charges. We investigate ’t Hooft-Polyakov monopole type ...

متن کامل

On the Ginsparg-Wilson Dirac operator in the monopole backgrounds on the fuzzy 2-sphere

In the previous papers, we studied the ’t Hooft-Polyakov (TP) monopole configurations in the U(2) gauge theory on the fuzzy 2-sphere, and showed they have nonzero topological charge in the formalism based on the Ginsparg-Wilson (GW) relation. In this paper, we will show an index theorem in the TP monopole background, which is defined in the projected space, and provide a meaning of the projecti...

متن کامل

Criterium for the index theorem on the lattice

We study how far the Index Theorem can be extrapolated from the continuum to finite lattices with finite topological charge densities. To examine how the Wilson action approximates the Index theorem, we specialize in the lattice version of the Schwinger model. We propose a new criterion for solutions of the Ginsparg-Wilson Relation constructed with the Wilson action. We conclude that the Neuber...

متن کامل

Generalized Ginsparg-Wilson algebra and index theorem on the lattice

Recent studies of the topological properties of a general class of lattice Dirac operators are reported. This is based on a specific algebraic realization of the Ginsparg-Wilson relation in the form γ5(γ5D) + (γ5D)γ5 = 2a (γ5D) 2k+2 where k stands for a non-negative integer. The choice k = 0 corresponds to the commonly discussed Ginsparg-Wilson relation and thus to the overlap operator. It is s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009